
  

1 

 

Depreciation of Business R&D Capital 

Wendy C.Y. Li 

U.S. Bureau of Economic Analysis (BEA) 

Wendy.Li@bea.gov 

Bronwyn H. Hall 

University of California at Berkeley and NBER 

bhhall@econberkeley.edu 

Date: August 1, 2016 

Abstract 

We develop a forward-looking profit model to estimate the depreciation rates of business 

R&D capital. By using data from Compustat, BEA, and NSF between 1987 and 2008, and the 

newly developed model, we estimate both constant and time-varying industry-specific R&D 

depreciation rates. The estimates are the first complete set of R&D depreciation rates for 

major U.S. high-tech industries. They align with the main conclusions from recent studies 

that the rates are in general higher than the traditionally assumed 15 percent and vary 

across industries. The relative ranking of the constant R&D depreciation rates among 

industries is consistent with industry observations and the industry-specific time-varying 

rates are informative about the dynamics of technological change and the levels of 

competition across industries. Lastly, we also present a cross-country comparison of the 

R&D depreciation rates between the U.S. and Japan, and find that the results reflect the 

relative technological competitiveness in key industries.  
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1. Introduction  

In an increasingly knowledge-based U.S. economy, measuring intangible assets, including 

research and development (R&D) assets, is critical to obtaining a complete picture of the 

economy and explaining its sources of growth. Corrado et al. (2007) pointed out that after 

1995 intangible assets reached parity with tangible assets as a source of growth. Despite the 

increasing impact of intangible assets on economic growth, it is difficult to capitalize 

intangible assets in the national income and product accounts (NIPAs) and therefore to 

measure their impacts on economic growth. The difficulties arise because the capitalization 

involves several critical but difficult measurement issues. One of these is the measurement 

of the depreciation rate of intangible assets, including R&D assets.  

The depreciation rate of R&D assets is required for capitalizing R&D investments in the 

NIPAs for two reasons. First, the depreciation rate is needed to construct knowledge stocks 

– it is the only asset-specific element in the commonly adopted user cost formula. This user 

cost formula is used to calculate the flow of capital services (Jorgenson, 1963, Hall and 

Jorgenson, 1967, Corrado et al., 2007, Aizcorbe et al., 2009), which is important for 

examining how R&D capital affects the productivity growth of the U.S. economy (Okubo et 

al., 2006). Second, the depreciation rate is required in order to measure the rate of return to 

R&D (Hall, 2005).  

As Griliches (1996) concludes, the measurement of R&D depreciation is the central 

unresolved problem in the measurement of the rate of return to R&D. The problem arises 

from the fact that both the price and output of R&D capital are generally unobservable. 

Additionally, there is no arms-length market for most R&D assets and the majority of R&D 

capital is developed for own use by the firms. Therefore it is difficult to independently 

compute the depreciation rate of R&D capital (Hall, 2005, Corrado et al., 2007). Moreover, 

unlike tangible capital which depreciates partly due to physical decay or wear and tear, 

R&D capital depreciates mainly because its contribution to a firm’s profit declines over time. 

The driving forces are obsolescence and competition (Hall, 2005), both of which reflect 

individual industry technological and competitive environments. Given that these 

environments can vary immensely across industries and over time, the resulting (private) 

R&D depreciation rates should also vary across industries and over time.  



  

3 

 

In response to these measurement difficulties, previous research has adopted four major 

approaches to calculate R&D depreciation rates: patent renewal, production function, 

amortization, and market valuation (Mead, 2007). As summarized by Mead (2007), all 

approaches encounter the problem of insufficient data on variation and thus cannot 

separately identify R&D depreciation rates without imposing strong identifying 

assumptions. Given the fact that firms’ propensities to patent vary across industries and 

technology areas, the patent renewal approach cannot capture all innovation activities (Hall 

et al., 2014). Moreover, innovations may remain valuable even if their patents have expired, 

given the other ways in which firms capture returns to R&D (Levin et al., 1987). The patent 

renewal approach also suffers from the failure to observe the right hand tail of a very 

skewed value distribution due to the relatively low level of renewal fees. The identification 

problem can be mitigated by using citation-weighted patent data, but there is a truncation 

bias problem arising due to an incomplete observed citation life of patents (Hall et al., 2000).  

Using the production function and market value approaches has the advantage of 

incorporating all R&D rather than just that which is patented. However, these approaches 

generally rely on the assumption that the average realized rate of return is the same as the 

expected rate of return (Hall, 2005). This assumption allows one to back out the 

depreciation rate which makes the two consistent. We use a similar approach here, in that 

we assume a normal rate of return to R&D when computing the profit function.  

An additional complication is the question of a gestation lag for the output of R&D. Most 

earlier research has failed to deal with the issue of gestation lags by treating them as zero or 

one year to calculate the R&D capital stock (Corrado et al., 2007, but see Hall and Hayashi, 

1989 for an exception). Because the product development life cycle varies across industries, 

this treatment is questionable for R&D assets so we explore the use of a gestation lag here.  

This paper introduces a new approach by developing a forward-looking profit model that 

can be used to calculate both constant and time-varying industry-specific R&D depreciation 

rates. The model is built on the core concept that R&D capital depreciates because its 

contribution to a firm’s profit declines over time. Our forward-looking profit model rests on 

some relatively simple assumptions that are plausible given the nature of the data  and 

allows us to estimate R&D depreciation rates by using only data on R&D investment and 

sales or industry output.  
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The model is applied to two different datasets, one for firms and one for industries, to 

calculate constant R&D depreciation rates for all ten R&D intensive industries identified in 

BEA’s R&D Satellite Account (R&DSA). The first dataset is constructed from Compustat SIC-

based firm-level sales and R&D investments in ten R&D intensive industries. The second 

dataset contains BEA-NSF NAICS-based establishment-level industry output and R&D 

investments in ten R&D intensive industries. Both sets of estimates show that the derived 

R&D depreciation rates align with the major conclusions from recent studies that the rates 

should be higher than the traditional assumption (15 percent) and vary across industries. 

Our new method demonstrates the feasibility of estimating R&D depreciation rates from 

industry data. Given that the BEA-NSF dataset better represents the industry population 

because it is not confined to publicly traded firms, we also apply the model to the BEA-NSF 

dataset to estimate the industry-specific time-varying R&D deprecation rates for five 

selected R&D intensive industries. The results are in general consistent with industry 

observations on the pace of technological change or reflect the appropriability condition of 

its intellectual property.  

The remainder of this paper is organized as follows. Section 2 sets out our new R&D 

investment model. Section 3 presents a firm and industry-level data analysis that assumes 

constant depreciation rates over time. Section 4 presents time-varying depreciation rates 

for five selected BEA’s R&D intensive industries. Section 5 presents the first cross-country 

comparison of R&D depreciation rates between the U.S. and Japan for several key R&D 

intensive industries, and concluding remarks are given in Section 6.  

2. Model  

The premise of our model is that business R&D capital depreciates because its contribution 

to a firm’s profit declines over time. R&D capital generates privately appropriable returns; 

thus, it depreciates when its appropriable return declines over time. The expected R&D 

depreciation rate is a necessary and important component of a firm’s R&D investment 

model. A profit-maximizing firm will invest in R&D such that the expected marginal benefit 

equals the marginal cost. That is, in each period t, a firm will choose an R&D investment 

amount to maximize the net present value of the expected returns to R&D investment:  
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where Rt is the R&D investment amount in period t, qt is the sales in period t, I(Rt) is the 

increase in profit rate due to R&D investment, δ is the R&D depreciation rate, and r is the 

cost of capital. The parameter d is the gestation lag and is assumed to be an integer which is 

no less than 0. R&D investment in period t will contribute to the profits in later periods but 

at a geometrically declining rate. We assume that the sales q for periods later than t grows 

at a constant growth rate, 𝑔. That is,  1t

j

t jq q g   . This assumption is consistent with 

the fact that the output of most R&D intensive industries grows fairly smoothly over time 

(See Figures B-1 and B-2 in the appendices).  

Place figure 1 here. 

To resolve the issue that the prices of most R&D assets are generally unobservable, we 

define  I(R) as a concave function: 
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  . Figure 1 depicts how 

the function I gradually increases asymptotically to I, with R, the current-period R&D 

investment. The increase in profit rate due to R&D investments, I’(R), has an upper bound at 

I when R = 0. This functional form has few parameters but nevertheless shows the desired 

concavity with respect to R. In this, our approach is similar to that adopted by Cohen and 

Klepper (1996), who show that when there are fixed costs to an R&D program and firms 

have multiple projects, the resulting R&D productivity will be heterogeneous across firms 

and self-selection will ensure that the observed productivity of R&D will vary negatively 

with firm size. Our model incorporates the assumption of diminishing marginal returns to 

R&D investment implied by their assumptions, which is more realistic than the traditional 

assumption of constant returns to scale (Griliches, 1996). In addition, the model implicitly 

assumes that innovation is incremental, which is appropriate for industry aggregate R&D, 

most of which is performed by large established firms.  
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The function I includes a parameter   that defines the investment scale for increases in 

R&D and acts as a deflator to capture the increasing time trend of R&D investment as a 

component of investment in many industries. The value of  can vary from industry to 

industry, allowing different R&D investment scales for different industries. In Figure B-3 

and B-4, both the BEA-NSF industry data and the Compustat average firm data show that 

the average R&D investment in most industries increases greatly over a period of two 

decades, and therefore we expect that the investment scale, θ, needed to achieve the same 

increase in profit rate should grow accordingly.  

Using this function for the profitability of R&D, the R&D investment model becomes the 

following: 
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  (3) 

Note that we have assumed that d, r, and δ are known to the firm at time t. Because θ varies 

over time, we model the time-dependent feature of   by  0 1
t

t G   , where 𝐺 is the 

growth rate of θt. To estimate G, we assume that the growth pattern of industry’s R&D 

investment and its R&D investment scale are similar and we estimate G by fitting the data 

for R&D investment to the equation,  0 1
t

tR R G  . This approach is justified by the fact 

that BEA data on most industry R&D grows somewhat smoothly over time (See Figure B-3), 

Using this assumption, Equation (3) becomes:  
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Note that because of our assumptions of constant growth in sales and R&D, there is no 

longer any role for uncertainty in this equation, and therefore no error term. Assuming 

profit maximization, the optimal choice of Rt implies the following first order condition: 
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For estimation, we add a disturbance to this equation (reflecting the fact that it will not hold 

identically for all industries in all years) and then estimate θ0 and the depreciation rate . 

3. Estimation with constant R&D depreciation rates 

As a first step in our empirical analysis, we estimate the time-constant R&D depreciation 

rates based on two datasets. One is the firm-level Compustat dataset from 1989 to 2008 and 

the other is the industry-level BEA-NSF dataset from 1987 to 2007. The Compustat dataset 

contains firm-level sales and R&D investments for ten SIC-based industries. Their 

corresponding SIC codes and numbers of firms are listed in Table 1. For the Compustat data, 

we take the average values of annual sales and R&D investment in each industry for 

estimation. If the number of firms was the same every year, using means would be the same 

as using aggregate data; however, there is entry and exit in this dataset so the results are 

based on average firm behavior. The BEA-NSF data that we use is fundamentally different, 

as it is designed to measure true industry aggregates (correcting for such things as firm 

presence in multiple industries, something we are unable to do with Compustat data).  

Place table 1 here.  

The model used for estimation, based on equation (5), is shown below:  
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  (6) 

Where ĝ  and Ĝ  are estimated using the entire time period. In order to estimate, we need 

to make assumptions about IΩ, r, and d. The value of IΩ can be inferred from the BEA annual 

return rates of all assets for non-financial corporations. As Jorgenson and Griliches (1967) 

argue, in equilibrium the rates of return for all assets should be equal to ensure no arbitrage, 

and so we can use a common rate of return for both tangibles and intangibles (such as R&D 

assets). For simplicity, IΩ is set to be the average return rates of all assets for non-financial 

corporations during 1987-2008, which is 8.9 percent. In addition, in equilibrium the rate of 

return should be equal to the cost of capital. Therefore, we use the same value for r. Later in 

the paper we perform a sensitivity analysis using time-varying rates of return, based both 
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on the 3 month T-bill rate plus a risk adjustment of 4 per cent and on the BEA’s own time-

varying rate of return to assets.  

We use a 2-year gestation lag d, which is consistent with the finding in Pakes and 

Schankerman (1984) who examined 49 manufacturing firms across industries and reported 

that gestation lags between 1.2 and 2.5 years were appropriate values to use (see also Hall 

and Hayashi, 1989). In addition, according to the recent U.S. R&D survey conducted by BEA, 

Census Bureau and National Science Foundation (NSF) in 2010, the average gestation lag is 

1.94 years for all industries. 1 We also report estimates using a gestation lag of zero years. 

Rt and qt are taken from the data and also used to compute the average growth rates of 

output (G) and of R&D (g), so the only unknown parameters in the equation are  and . 

Given these assumptions,  and  are estimated by nonlinear least squares (NLLS) and 

nonlinear generalized method of moments (GMM), using equation (6).  

3.1 Nonlinear Least Squares Estimates 

This section of the paper reports the results of NLLS estimation using our two datasets. 

Table 3 shows the two sets of estimated industry-specific constant R&D depreciation rates 

based on the Compustat company-based data and the BEA-NSF establishment-based data. 

With the exception of computer system design and motor vehicles, the rates estimated 

using BEA-NSF data tend to be lower than those using Compustat data, which might be 

consistent with spillovers at the industry level not captured by publicly traded firm data. 

The depreciation rates are consistent with most industry observations. For example, the 

pharmaceutical industry has the lowest R&D depreciation rates in both sets of estimates, 

which may reflect the fact that R&D resources in pharmaceuticals are more appropriable 

than in other industries due to effective patent protection and other entry barriers. 

Compared with the pharmaceutical industry, the computers and peripheral industry has a 

higher R&D depreciation rate, which is consistent with industry observations that the 

industry has adopted a higher degree of global outsourcing to source from few global 

suppliers (Li, 2008). Module design and efficient global supply chain management has made 

                                                             

1 The average gestation lag is based on the responses from 6,381 firms across 38 industries in the 
NSF 2010 Business R&D and Innovation Survey (BRDIS).  
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the products introduced in this industry more like commodities, which have shorter 

product life cycles.  

Place tables 2 and 3 here.  

Table 2 showed the time-constant R&D depreciation rates estimated by other recent studies. 

Comparing Table 3 with Table 2, we can see several key results from this study. First, the 

estimated industry-specific R&D depreciation rates are consistent with those of recent 

studies, which indicate that depreciation rates for business R&D are likely to vary across 

industries due to the different competition environments and paces of technology change. 

Second, most industries have R&D depreciation rates higher than the traditional ly assumed 

15 percent that has been the benchmark for much of the empirical work (Grilliches and 

Mairesse, 1984, Berstein and Mamuneas, 2006, Corrado et al., 2007, Hall, 2007, Huang and 

Diewert, 2007, Warusawitharana, 2010). Third, the R&D depreciation rate in the scientific 

research and development industry is much higher than that in the pharmaceutical 

industry.2 This is consistent with industry observations that in the past two decades, there 

has been little innovation in the traditional pharmaceutical industry and 

biopharmaceuticals has faster growth rate of innovation. For example, in 1988, only 5 

proteins from genetically engineered cells had been approved as drugs by the U.S. F DA, but 

the number has skyrocketed to over 125 by the end of 1990s (Colwell, 2002).  

Among the R&D depreciation rates in the ten analyzed R&D intensive industries, the values 

for the aerospace and auto industries are usually large compared to those for other 

industries. For example, the estimated R&D depreciation rates for the auto industry are 56.0 

percent and 74.3 percent for the Compustat and BEA-NSF data respectively. These results 

are not inconsistent with the result of the UK’s ONS (Office of National Statistics) survey of 

the R&D service lives (Haltiwanger et al., 2010). The average R&D service life for the auto 

industry in the UK’s ONS survey is 4.3 years, which implies an R&D depreciation rate over 

                                                             

2 According to NSF’s BRDIS in 2009, biotech firms account for over 65% of R&D investments in the 
scientific research and development industry. Other firms related to physical, engineering, and life 
sciences account for around 34.5% of R&D investments.  
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40 percent. Note that the response rate of the UK’s ONS survey, however, is reported to be 

low.3 

In our formulation of the R&D investment model, there is an implicit tradeoff between the 

assumed ex ante rate of return and the computed depreciation rate. Essentially the 

depreciation rate for private business R&D is determined by the competitive environment 

of the firms that do it, and if the rate of return turns out to be lower than expected, the 

implication is that the value of the R&D has depreciated. We illustrate this tradeoff by 

reestimating our model for the aerospace and auto industries with an assumed rate of 

return to R&D of 1 percent. This is justified by two facts: First, the U.S. auto industry had 

negative return rates during the data period.4 Second, in its August 2011 report on the 

Aerospace and Defense industrial base assessments, the Office of Technology Evaluation at 

Department of Commerce reports that the industry’s profit margin is around 1% and may 

be only 10% of the performance of high-tech industries in Silicon Valley (Department of 

Commerce, 2011).5  

Table 3 reports estimates for these two industries that use the lower rates of return in 

italics and they are much lower, around 7-15 percent, confirming our intuition about the 

tradeoff between rates of return and depreciation. It is also worth noting that the data 

quality of R&D expenses in the auto and the aerospace industries are poor and the R&D data 

based on 10-K & 10-Q reports do not cover the industry well. For example, in the aerospace 

industry, some firms clearly report their own investment in R&D, but others report R&D 

expenses that combine federally funded and company-funded R&D. 

                                                             

3 In 2011 and 2012, the UK’s ONS conducted two back-to-back surveys on 1701 firms and found a 
median R&D service life of 6 years for all industries. Compared with 2.1% in the U.S. similar survey in 
2010, the two surveys have better response rates at around 43%. However, the survey result has a 
very high degree of uncertainty (Kerr, 2014; Li, 2014). For example, the average answer difference 
from the same correspondent for the same company is 3.9 years and the average difference from 
different correspondents is 4.5 years. The UK’s survey result is consistent with the U.S.’s finding that 
most respondents could not answer questions related to the R&D service lives correctly (Li, 2012). In 
the end, the UK’s ONS adopts 16% as the R&D depreciation rate for all industries.  

4 Private communication with Brian Sliker at BEA, an expert in the return rate of industry assets, 
confirmed this negative trend in the auto industry.  

5 After using the new modified model, our new estimate is 29% higher than the rate in Huang and 
Diewert (2007). However, in the later section of cross-country comparison, the estimates between 
the U.S. and Japan in this industry are reasonable. Diewert reports in private communication that 
they found computing the optimal rate in this sector difficult. 
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Table 4 presents the results of a sensitivity analysis for the gestation lag and ex ante rate of 

return. The first two sets of columns compare gestation lags of two and zero years.6 In 

general, the estimated depreciation rates do not differ a great deal,  and those for the zero 

lag are slightly higher, except in the software, computer system design, and scientific 

research and development. Interestingly, these three sectors are the only service sectors. A 

possible interpretation of the general result is the following: if the gestation lag is zero 

rather than two, effectively there is a greater stock of R&D over which to spread the same 

profits, so it must depreciate more rapidly to explain the same rate of return. The fact that 

the service sectors do not follow this pattern is somewhat puzzling but is doubtless due to 

the specific trends in R&D and output in those sectors.  

Place table 4 here.  

The estimates are not sensitive to allowing a variable cost of capital (although as we saw 

earlier, they are sensitive to a change in the overall level. The last two sets of columns in 

Table 4 show results when the cost of capital/rate of return is set to (1) the riskfree 3 -

month treasury bill rate plus a risk premium of 4 percent or (2) BEA’s own measured 

average rate of return to assets during the year. Figure B-5 displays these time series. There 

is little difference in the estimates across these columns. Figure 2 graphs the sensitivity of 

the estimated depreciation rate of R&D assets to the assumed cost of capital for each 

industry separately. There are clear differences across the industries, with autos, computer 

hardware and services, aerospace, and instruments the most sensitive to the assumption, 

and the other sectors much less sensitive.  

Place figure 2 here. 

3.2 Nonlinear GMM  

We may be concerned that simultaneity between current output and R&D (due to cash flow 

or demand shocks) could bias estimates of the relation in equation (6). To check this 

possibility we estimated the equation using nonlinear GMM, choosing lagged values of R&D 

and output as instruments. The choice of instrument variables is based on the assumption 

                                                             

6 BEA adopts a zero gestation lag, on the grounds that when a firm invests in R&D, the R&D 
investment should contribute immediately to the firm’s knowledge stock.  
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that (given a forward-looking profit model) previous R&D investments and output are not 

related to any shocks (ε) to the optimal R&D plan described by equation (6). 

Place table 5 here.  

Table 5 compares the estimates based on nonlinear least squares and nonlinear GMM, both 

computed with a two-year gestation lag and an expected rate of return equal to 8.9%. In 

general, the nonlinear GMM estimates have higher standard errors than those associated 

with the nonlinear least squares estimates, although not always. With the exception of the 

aerospace sector, where the estimated depreciation rate is much lower, the estimates are 

very similar to those obtained using nonlinear least squares. We also report the results of a 

test of the over-identifying restriction (degrees of freedom equal to one), which passes only 

for the aerospace and motor vehicle sector. If future datasets are larger in size and we are 

able to find better instruments, the nonlinear GMM approach might provide a more robust 

estimation, but for the current data these results suggest that the nonlinear least squares 

estimates are adequate.  

4. Estimation with time-varying R&D depreciation rates  

Since the technological and competition environments change over time, the R&D 

depreciation rates are expected to vary through the 21 years of data studied. Therefore, 

there is a need to calculate industry-specific and time-dependent R&D depreciation rates. 

We use the same industry output and R&D investment data from the BEA-NSF dataset. 

Unlike the Compustat dataset which contains only the data of large publicly traded firms, 

the BEA-NSF data better represent the industry by including firms with 5 or more 

employees.7 The time-dependent feature of  was obtained by minimizing Equation (6) with 

subsets of data. Instead of using all years of data, we performed least squares fitting over a 

five-year interval each time, with a step of 2 years in progression. As a result, the data-

model fit is carried out nine times for 21 years of data, and each estimated depreciation rate 

is assigned to the center of a time window. The values of d, IΩ, and r are defined in the same 

manner as before. Although there are only 5 data points to estimate the two parameters, the 

                                                             

7 The R&D data come from the NSF’s BRDIS. BRDIS is a nationally representative sample of all 
companies with 5 or more employees in all industries. 
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estimates generally converged well and the standard error estimates are not that large, 

except in a few cases.  

Place figure 3 here. 

Figure 3 shows the best-fit time-varying R&D depreciation rates for all ten industries 

together with their standard errors; the figures are plotted on the same scale to facilitate 

comparison. The industries differ in their volatility considerably, with software, 

pharmaceuticals, semiconductors, motor vehicles and scientific R&D being relatively stable, 

whereas the industries strongly affected by hardware-related technical change during this 

time period are much more volatile (e.g., computing equipment, aerospace, communication 

equipment, computer system design, and scientific instruments). One concern with these 

results may be the underlying data: industries like semiconductors and motor vehicles 

whose R&D is dominated by very large firms may be somewhat better measured than the 

communication equipment or instruments sector.  

Place figure 4 here. 

Figure 4 shows the results of a similar estimation using the sales and R&D of the average 

firm on Compustat for comparison. It is important to keep in mind that these series will be 

very different in some cases but not in others. For example, pharmaceutical R&D (as 

opposed to biotechnology R&D) is largely conducted in firms assigned by Compustat to the 

pharmaceutical sector, so the BEA and Compustat data will be similar. In contrast, most 

software R&D is conducted by hardware firms, so that if when we compute the average R&D 

and sales in the software sector as defined by Compustat, it is very different from the 

software R&D spending and output measured by BEA and NSF, which includes that from 

hardware firms. Similar statements might be made about computer systems design and we 

do see that the trends in both these sectors are very different looking across results from 

the two datasets in Figures 3 and 4. In contrast, the depreciation rates in pharmaceuticals 

look fairly similar, and are generally around 15-20 per cent. 

Figures 3 and 4 also reveal some other facts about the industries we studied. First, the 

pharmaceutical industry has a somewhat declining depreciation pattern, which implies a 

slower pace of technological change. This is consistent with the industry’s consensus that 

factors such as stricter FDA approval guidelines have negatively affected the industry’s 

productivity growth in R&D in recent years. As a result, the industry has been experiencing 
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a negative productivity growth in R&D in recent years. For example, during the period of 

1990 to 1999, the FDA approved an average of 31 drugs per year, but this number dropped 

to 24 during the period of 2000 to 2009 (Rockoff and Winslow, 2011) and further went 

down to 21 in 2010 (Lamattina, 2011). However, the scientific R&D industry, which is 

composed majority by biotech firms, has a higher level of depreciation rates that has not 

declined since 1990. This echoes the fact mentioned previously that, in the past two decades, 

there has been little innovation in the traditional pharmaceutical industry and the 

biopharmaceuticals industry has faster growth rate of innovation. 

Second, the R&D depreciation rate of the semiconductor industry shows a clear declining 

trend after 2000 in both datasets, albeit imprecisely measured. This depreciation pattern is 

consistent with several research results. For example, since 2000, the rate of technological 

change in the microprocessor industry has slowed (Flamm, 2007). By combining our 

depreciation pattern with the evidence of a slower pace of productivity growth in the 

semiconductor industry after 2000 (Jorgenson et al., 2012), we find that our result supports 

Jorgenson’s hypothesis (2001) that the increase in the pace of technological change  in this 

sector is positively related to faster productivity growth.  

Third, the computer and peripherals equipment industry had stable R&D depreciation 

before 1995, a decline during the late 1990s, and then increased slowly or stabilized after 

2001. It is helpful to recall the result by Hall (2005) who shows a pattern of decreasing 

depreciation for the computers, communication equipment, and scientific instrument 

industries during the period of 1989 to 2003. Since Hall’s result is based on the data 

including two additional high-tech industries, it is not adequate to directly compare the 

depreciation patterns between the two studies. Nonetheless, it is well known that since the 

late 1990s, the products in the computer and peripherals equipment industry have also 

become more like commodities,8 a trend that implies a shorter product life cycle, a higher 

degree of market competition, and possibly a slower pace of technological change, 

mirroring that in semiconductors. 

Lastly, the R&D depreciation of the software industry, as measured by the BEA-NSF data, 

also experienced a declining trend during the period from 1995 to early 2000s. The 

                                                             

8 Note that in recent years the International Consumer Electronics Show (CES) has become more 
important than ever for the computer manufacturers to introduce their new products and prototypes.  
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declining trend reflects the fact that, compared with the variable technology environment 

during the period from 1980s to early 1990s, the Wintel system provided a more stable 

development environment starting from mid-1990s.  

5. Cross-country Comparison: U.S. vs. Japan 

The R&D depreciation rate is one of the critical elements in computing R&D stock for the 

analysis of a country’s productivity and economic growth. At the present time, however, 

there is no consistent methodology to estimate industry-specific R&D depreciation rates 

across countries. When no survey and/or research information is available, Eurostat 

recommends that a single average service life of 10 years should be retained (Eurostat, 

2012). As a result, many OECD countries adopted R&D depreciation rates close to either 

Eurostat’s recommendation or the traditional assumed 15 percent. The lack of variations in 

R&D depreciation rates across countries and across industries implies that countries, no 

matter in technology frontier or not, have a similar pace of technological progress and 

degree of market competition across countries. This result contradicts existing trade and 

growth theories.  

Our method is an attempt to provide a consistent and reliable way to estimate industry-

specific R&D depreciation rates across countries and to enable cross-country comparisons. 

Table 6 compares the estimated R&D depreciation rates between the U.S. and Japan for all 

industries that are R&D-intensive in Japan, including the drugs and medicines industry, the 

electrical machinery, equipment and supplies industry, the information and communication 

electronic equipment industry, and the transportation equipment. Due to data availability 

limitations, the estimates of Japanese R&D depreciation rates cover the period of 2002 to 

2012. All estimates are based on a 2-year gestation lag, and the values of IΩ and r are 

assumed to be 0.06, a number that is provided by Japan’s National Accounts Department.  

Place table 6 here. 

Table 6 shows several important results. First, for the information and communication 

electronic equipment industry, the R&D depreciation rates between the two countries are 

very similar, after considering the standard errors. Second, compared with the counterpart 

in Japan, the U.S. pharmaceutical industry has a slightly smaller R&D depreciation rate, 

implying that U.S. pharmaceutical firms have a slight technology edge in this field and can 
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better appropriate the returns from their investments in R&D assets. This result is 

consistent with the U.S. International Trade Commission’s report on the global medical 

device industry, where it finds that, in terms of technological advantage, the U.S. is ranked 

first in the world and Japan is a close second (USITC, 2007). Third, Japan’s lower R&D 

depreciation rate in the auto and electrical machinery industries indicates that, in these two 

industries, Japan has a clear technological edge and can better appropriate the return from 

its investments in R&D. This is also consistent with the industry observations on those two 

major industries.  

6. Conclusions  

R&D depreciation rates are critical to calculating the rates of return to R&D investments and 

capital service costs, which are important for capitalizing R&D investments in the national 

income accounts. Although important, measuring R&D depreciation rates is extremely 

difficult because both the price and output of R&D capital are generally unobservable.  

In this research, we developed a forward-looking profit model to derive industry-specific 

R&D depreciation rates. Our model uses only data on R&D and output together with a few 

simple assumptions on the role of R&D in generating profits for the firm. Using some 

plausible assumptions about the expected rate of return for R&D, the model allows us to 

calculate not only industry-specific constant R&D depreciation rates but also time-varying 

rates. 

We used both nonlinear least squares and nonlinear GMM to fit the model to the data. Both 

gave similar results, although GMM passed the overidentification test only part of the time. 

Future work would be useful to find better instruments and to improve the quality of the 

underlying data.  

Our research results highlight several promising features of the new forward-looking profit 

model: First, the derived constant industry-specific R&D depreciation rates are consistent 

with the conclusions from recent studies that depreciation rates for business R&D are likely 

to be more variable due to different competition environments across industries and higher 

than traditional 15 percent assumption (Bernstein and Mamuneas, 2006, Corrado et al., 

2007, Hall, 2005, Huang and Diewert, 2007, Warusawitharana 2010). Second, the time-

varying results capture the heterogeneous nature of industry environments in technology 



  

17 

 

and competition. For example, by combining our depreciation pattern in the semiconductor 

industry with the evidence of a slower pace of productivity growth in the same industry 

after 2000 (Jorgenson et al., 2012), we find support to Jorgenson’s hypothesis (2001) that 

the increase in the pace of technological change is positively related to faster productivity 

growth. Third, our method provides a consistent and reliable way to perform cross-country 

comparisons of R&D depreciation rates, which can inform countries’ relative paces of 

technological progress and technological environments as exemplified in the U.S.-Japan 

comparison. Lastly, it is well known that no direct measurements can verify any estimate of 

R&D depreciation rates. However, our results are consistent with the observations for many 

industries and across countries.  

While this study provides the first complete set of industry-specific business R&D 

depreciation rates for all ten R&D intensive industries identified in BEA’s R&D Satellite 

Account, future research can make improvements in several areas. In future research, we 

can modify the model to relax the assumption. First, current estimation uses nominal R&D 

and output data. When the industry-specific price index of R&D assets becomes available, 

we can improve the estimates by explicitly incorporating price level change. Second, the 

current model assumes the decision maker has a perfect foresight. Future research can 

relax this assumption by including the uncertainty in the model. Lastly, the current model 

assumes decreasing marginal returns to R&D investments and innovations to be 

incremental. Future research may relax these two assumptions and modify the model to be 

applicable to the industry with increasing marginal returns to R&D investments and drastic 

innovations.  
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Table 1: Industry, Correspondent SIC Codes, and Numbers of Firms  
 

 
  

Industry SIC Codes Firms Observations

Computers and peripheral equipment
3570-3579, 3680-3689, 

3695
395 2,398

Software 7372 1,041 7,132

Pharmaceuticals 2830, 2831, 2833-2836 1,046 8,531

Semiconductor 3661-3666, 3669-3679 876 6,132

Aerospace product and parts
3720, 3721, 3724, 3728, 

3760
109 951

Communication equipment
3576, 3661, 3663, 3669, 

3679
596 4,277

Computer system design 7370, 7371, 7373 471 2,519

Motor vehicles, bodies and trailers, 

and parts
3585, 3711, 3713-3716 308 1,639

Navigational, measuring, 

electromedical, and control 

instruments

3812, 3822, 3823, 3825, 

3826, 3829, 3842, 3844, 

3845

887 6,489

Scientific research and development 8731 118 598

 Notes:

1. SIC codes containing only few firms are not listed.

2. The data are an unbalanced panel with 40,666 observations on about 5,847 firms between 1989 

and 2008, drawn from Compustat.
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Table 2: Summary of Previous Studies on R&D Depreciation Rates 
 

 

Study Industry Estimate Method Data

Chemicals 11%

Electrical equipment 13%

Industrial machinery 14%

Scientific instruments 20%

Transportation equipment 14%

Chemicals 14%

Electrical equipment 13%

Industrial machinery 14%

Scientific instruments 14%

Transportation equipment 17%

Knott et al. (2003) Pharmaceuticals 88-100%
Production 

function

40 U.S. firms over the 

period of 1979 -1998

Chemicals 18%

Electrical equipment 29%

Industrial machinery 26%

Transportation equipment 17%

Computers and scientific 

instruments
-5%

Electrical equipment -3%

Chemicals -2%

Drugs and medical 

instruments
-11%

Metal and machinery -2%

Computers and scientific 

instruments
31%

Electrical equipment 36%

Chemicals 19%

Drugs and medical 

instruments
15%

Metal and machinery 32%

Chemicals 1%

Electrical equipment 14%

Industrial machinery 3%

Transportation equipment 27%

Semiconudctors 34%

Computer hardware 28%

Medical equipment 37%

Pharmaceuticals 41%

Software 37%

Note: With the exception of Berstein and Mamuneas (2006) and Huang and Diewert (2007), all of the studies 

are based on US Computstat data.

Production 

function

Huang and 

Diewert (2007)

Production 

function

U.S. industries over 

the period of 1953-

2001

Warusawitharana 

(2010)

Market 

valuation

U.S. industries over 

the period of 1987- 

2006

Berstein and 

Mamuneas (2006)

Production 

function

U.S. industries over 

the period of 1954-

2000

Hall (2005)

16750 U.S. firms 

over the period of 

1974-2003

Hall (2005)
Market 

valuation

16750 U.S. firms 

over the period of 

1974-2003

Lev and 

Sougiannis (1996)
Amortization

825 U.S. firms over 

the period of 1975-

1991

Ballester et al. 

(2003)
Amortization

652 U.S. firms over 

the period of 1985-

2001
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Table 3: Nonlinear Least Squares estimates of the R&D depreciation rate 
 

 
 
  

Time period

Industry Estimate s.e. Estimate s.e.

Computers and peripheral equipment 53.5% 2.1% 36.3% 3.8%

Software 35.0% 0.6% 30.8% 0.5%

Pharmaceutical 15.1% 1.0% 11.2% 4.8%

Semiconductor 29.3% 1.1% 22.6% 3.7%

Aerospace products and parts 88.0% 1.3% 33.9% 6.5%

Aerospace products and parts with ROR = 1% 15.9% 0.2% 6.3% 0.6%

Communication equipment 30.8% 1.2% 19.2% 3.3%

Computer system design 31.4% 3.0% 48.9% 7.9%

Motor vehicles, bodies and trailers, and parts 56.0% 2.3% 73.3% 2.9%

Motor vehicles, bodies and trailers, and parts, with 

ROR = 1%
11.0% 0.3% 11.9% 0.4%

Navigational, measuring, electromedical, and control 

instruments
47.2% 1.3% 32.9% 7.4%

Scientific research and development 32.6% 2.2% 29.5% 2.6%

Note: Gestation lag is 2 years; ex ante rate of return is 8.9

Compustat Data BEA-NSF Data

1989-2008 1987-2007
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Table 4: Sensitivity of the depreciation rate to assumptions – BEA-NSF data 
 

 
  

Gestation lag in years

Interest rate

Estimate s.e. Estimate s.e. Estimate s.e. Estimate s.e.

Computers and peripheral 

equipment
42.8% 4.3% 36.3% 3.8% 36.0% 4.4% 35.8% 4.5%

Software 28.8% 0.4% 30.8% 0.5% 32.3% 0.5% 30.6% 0.7%

Pharmaceutical 11.5% 4.9% 11.2% 4.8% 13.1% 3.1% 11.8% 3.7%

Semiconductor 25.1% 4.0% 22.6% 3.7% 23.1% 3.4% 22.4% 4.0%

Aerospace 39.0% 7.3% 33.9% 6.5% 32.4% 7.4% 35.0% 7.2%

Communication equipment 22.2% 3.7% 19.2% 3.3% 18.9% 2.9% 18.9% 2.9%

Computer system design 47.1% 7.6% 48.9% 7.9% 49.8% 6.6% 49.4% 6.7%

Motor vehicles, bodies and 

trailers, and parts
81.9% 3.2% 73.3% 2.9% 74.8% 3.6% 73.0% 2.9%

Navigational, measuring, 

electromedical, & control 

instruments

37.1% 8.2% 32.9% 7.4% 32.7% 7.8% 33.0% 6.8%

Scientific research and 

development
29.3% 2.6% 29.5% 2.6% 32.6% 3.1% 31.4% 2.3%

2

BEA return

Method of estimation is nonlinear least squares.

0

8.9%

2

8.9%

2

Tbill + 4%
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Table 5: Comparing estimation methods 
 

 
 
  

Industry

Estimate s.e. Estimate s.e.

Computers and peripheral 

equipment
36.3% 3.8% 36.9% 2.7% 0.057 *

Software 30.8% 0.5% 30.4% 0.8% 0.052 *

Pharmaceutical 11.2% 4.8% 13.7% 3.9% 0.002 ***

Semiconductors 22.6% 3.7% 23.7% 5.5% 0.006 ***

Aerospace products and parts 33.9% 6.5% 9.1% 9.2% 0.543

Communication equipment 19.2% 3.3% 23.8% 5.2% 0.000 ***

Computer system design 48.9% 7.9% 47.6% 21.3% 0.000 ***

Motor vehicles, bodies and 

trailers, and parts
73.3% 2.9% 63.9% 27.9% 0.192

Navigational, measuring, 

electromedical, & control 

instruments

32.9% 7.4% 33.1% 10.1% 0.000 ***

Scientific research and 

development
29.5% 2.6% 31.0% 2.6% 0.029 **

Notes:

BEA-NSF data

# The p-value of a test for overidentifying restrictions is reported in these columns. 

Estimates shown are for the depreciation rate and its standard error.

NLLS

Assumed gestation lag is two years; interest rate is 8.9%.

NL GMM

Test#
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Table 6: Comparing estimates for US and Japan  
 

 
 
  

Industry

Estimate s.e. Estimate s.e.

(1) Drugs and medicines 11.2% 4.8% 13.6% 0.7%

(2) Electrical machinery, equipment, 

and supplies
19.2% 3.3% 26.0% 4.3%

(3) Information and communication 

electronic equipment
32.9% 7.4% 23.5% 1.2%

(4) Transportation equipment 73.3% 2.9% 20.2% 0.6%

Notes:

3. The corresponding industries in the U.S. are: (1) the pharmaceutical industry, (2) the 

communication equipment industry, (3) the navigational, measuring, electromedical, and control 

instruments industry, and (4) the motor vehicles, bodies and trailers, and parts industry. 

US Japan

1. The estimates are based on a 2-year gestation lag.

2. The U.S. data cover the period of 1987 to 2007 and the Japan’s data cover the period of 2002 to 

2012.
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Figure 1: The Concavity of 𝑰(𝑹𝑫) 
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Figure 2: Sensitivity of the depreciation rate of R&D Assets to the Cost of 

Capital 
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Figure 3: Time-varying R&D Depreciation Rates Based on BEA-NSF data 
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Figure 4: Time-varying R&D Depreciation Rates Based on Compustat data 
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Appendix A: Nonlinear GMM 

The GMM estimatior is well-known. In this appendix we outline its implementation for our 

model. Let m(θ) ≡ ziεi and s(θ) ≡ E[m(θ)m(θ)’]. The corresponding analog sample moments 

are:  
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The corresponding sample analog is:  
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Note that GMM estimators are asymptotic normal: 

 1 ~ , ( 1)N n V    



  

32 

 

where 
1

'  1V M s M


    . 

To derive the optimal solution for θ, we solve the following optimization problem using the 

usual nonlinear minimum distance methods with the initial weight matrix as an identity 

matrix:  

    
'ˆ   ar ˆgmin Km W m



   
 

  

We continue the iterative operations until the change of the value of the objective function 

stabilizes. 
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Appendix B: Additional tables and figures 

Figure B-1 

 

Figure B-2 
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Figure B-3 

 
 

Figure B-4 
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Figure B-5 
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